Small Business Innovation Research/Small Business Tech Transfer

Physics-Based Probabilistic Design Tool with System-Level Reliability Constraint, Phase II

Completed Technology Project (2005 - 2007)

Project Introduction

The work proposed herein would develop a set of analytic methodologies and a computer tool suite enabling aerospace hardware designers to rapidly determine optimum risk-constrained designs subject to multiple physics-based uncertainties in applied loads, material properties, and manufacturing processes. This means that the design process no longer would consist of a sequence of separate code invocations to: (1) obtain the geometry model, (2) determine the various loads, (3) determine performance, (4) perform a structural analysis, (5) perform design optimization, and (6) perform a probabilistic risk assessment. Instead, all of these functions would be automatically incorporated into a single framework using existing physicsbased deterministic modeling codes and a set of computer-generated data transfer interfaces. Thus, a design engineer would be able to rapidly explore the design space to identify the minimum weight design that meets a given reliability constraint? thereby avoiding both an overly conservative design and an excessively risky design. Moreover, the methodology would also rollup component-level uncertainties to the system level for multiple components -thereby enabling a system level reliability constraint to be imposed at the component level. Advanced techniques will be developed including methods to: (a) determine confidence bounds on reliability predictions, (b) efficiently determine response surfaces, and (c) use physics-based progressive failure modeling. The software tool could be used, for example, to determine the wall thickness of a launch vehicle's external cryogenic propellant tanks exposed to high but uncertain thermal and aerodynamic loads with a reliability of 0.99999.

Primary U.S. Work Locations and Key Partners

Physics-Based Probabilistic Design Tool with System-Level Reliability Constraint, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility	1	
Project Management		
Technology Areas	2	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Physics-Based Probabilistic Design Tool with System-Level Reliability Constraint, Phase II

Completed Technology Project (2005 - 2007)

Organizations Performing Work	Role	Туре	Location
☆Glenn Research Center(GRC)	Lead Organization	NASA Center	Cleveland, Ohio
N&R Engineering	Supporting Organization	Industry Small Disadvantaged Business (SDB)	Parma Heights, Ohio

Primary U.	.S. Work	Locations
------------	----------	-----------

Ohio

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.2 Structures
 - ☐ TX12.2.3 Reliability and Sustainment

